(7y-14/y+1)/(y^2+2y-8/2y+2)

Simple and best practice solution for (7y-14/y+1)/(y^2+2y-8/2y+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7y-14/y+1)/(y^2+2y-8/2y+2) equation:


D( y )

y = 0

y^2+2*y-((8/2)*y)+2 = 0

y = 0

y = 0

y^2+2*y-((8/2)*y)+2 = 0

y^2+2*y-((8/2)*y)+2 = 0

y^2+2*y-4*y+2 = 0

y^2-2*y+2 = 0

DELTA = (-2)^2-(1*2*4)

DELTA = -4

DELTA < 0

y in (-oo:0) U (0:+oo)

(7*y-(14/y)+1)/(y^2+2*y-((8/2)*y)+2) = 0

(7*y-14*y^-1+1)/(y^2+2*y-4*y+2) = 0

(7*y-14*y^-1+1)/(y^2-2*y+2) = 0

7*y-14*y^-1+1 = 0

7*y^1-14*y^-1+1*y^0 = 0

(7*y^2+1*y^1-14*y^0)/(y^1) = 0 // * y^2

y^1*(7*y^2+1*y^1-14*y^0) = 0

y^1

7*y^2+y-14 = 0

7*y^2+y-14 = 0

DELTA = 1^2-(-14*4*7)

DELTA = 393

DELTA > 0

y = (393^(1/2)-1)/(2*7) or y = (-393^(1/2)-1)/(2*7)

y = (393^(1/2)-1)/14 or y = (-(393^(1/2)+1))/14

y in { (-(393^(1/2)+1))/14, (393^(1/2)-1)/14}

(y+(393^(1/2)+1)/14)*(y-((393^(1/2)-1)/14)) = 0

y^2-2*y+2 = 0

y^2-2*y+2 = 0

DELTA = (-2)^2-(1*2*4)

DELTA = -4

DELTA < 0

1 = 0

(y+(393^(1/2)+1)/14)*(y-((393^(1/2)-1)/14)) = 0

( y+(393^(1/2)+1)/14 )

y+(393^(1/2)+1)/14 = 0 // - (393^(1/2)+1)/14

y = -((393^(1/2)+1)/14)

( y-((393^(1/2)-1)/14) )

y-((393^(1/2)-1)/14) = 0 // + (393^(1/2)-1)/14

y = (393^(1/2)-1)/14

y in { -((393^(1/2)+1)/14), (393^(1/2)-1)/14 }

See similar equations:

| y=-7-9 | | 3(c-2)=25 | | y=-7-2 | | 3x(x+7)=x(7x-4) | | 9x^2+4y^2+18x-135=0 | | y=-8-5 | | -4u^2-u+3= | | y=19/16x+11/3 | | 5x-7x+42=3x+32 | | 40g^2/10g^5 | | -3x+7=-17 | | (7y-14/y+1)(y^2+2y-8/2y+2) | | 27=9c | | 9y^2-30y+25= | | -3y-2=2-2y | | 18=3k | | 240/18 | | 12v=-36-9v | | y=-1/5x-11/3 | | 3-2n=-3n+2 | | y=-13/9x+9/4 | | x+5/6=11/6 | | 0.15=t/873.36-2.15 | | 8+z=19 | | X+19=-x+26 | | 0.1=t/873.36-2.15 | | -3+3n=-15 | | 3a+6(8+2)= | | x^2-6x=3.5 | | log(2x+5)=6 | | 3x^2=6x+45 | | R=Q+ya |

Equations solver categories